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Abstract

Certain key characteristics of a general transport process accompanied by a mathematical non-linearity of the governing equation due tc
the chemical reaction term are studied with a hybrid boundary integral technique known as the Green element method (GEM). The weighting
function employed is the singular solution of the one-dimensional Laplace equation, and the non-linearity is resolved by the standard Newton—
Raphson and Picard methods. A number of illustrative problems are solved using this algorithm, and in each case, it is simply demonstrated
that GEM is both reliable and adequate for the accurate prediction of field variables.
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1. Introduction nite element techniques, and (ii) the boundary based method,
for example, the boundary integral methods. The integral
Mass transport of species accompanied by chemical re-formulation based on the boundary integral method is a
action has a ubiquitous presence in several areas of mediyell-established numerical procedure for solving engineer-
cine, engineering and science. For example in combustionjng proplems. An essential feature of the technique is the
and flame propagation, in contamination and remediation onyersion of the governing partial differential equation into
of aqueous environments, arterial blood circulation, design ji jhtegral equivalent by the use the Green's second identity
of heterogeneous reactors, and various enzymatic and blo'equation. The solution of an adjoint differential equation is

chemical reactlo_ns to men_tlon J.USt.a few. F_undgmentally then used as the weighting function for theak integral for-
the study of nonlinear reaction kinetics and diffusion paves . : .
mulation. In most cases, the boundary integral equations are

the way for a thorough understanding of these physical | tisfied at di 1 ber of point iting i
processes. Sometimes the time scales of diffusion and re-ON'y salishied at discrete number of points resulting in un-

action processes can vary significantly. This introduces steepSYMMetric matrices of the systems of linear algebraic equa-
profiles of dependent variables during solution, as is the caselions- In additiorboundary only implementation of standard
with combustion where mass transport of species is often ac-BEM makes the global matricéslly populated. A concomi-
Companied by a rapid reaction W|th|n an active zone. The de_ tant problem therefore iS the d|ﬁ|CU|ty encountered in han'
velopment of a general mathematical model describing sev-dling unsymmetric and fully populated matrices efficiently,
eral aspects of interaction between chemical, thermal andespecially for large-scale problems. A multi-zone approach
mass transfer processes is therefore very challenging. Somdaas often been adopted as a way of creating an overall system
early attempts to deal with these types of problems can beof equations that could be better handled numerically (Lafe
found in Lavoie et al. [1], Blumberg [2], Mills et al. [3], Pa- et al. [6]). By hindsight, this could be said to be one of the
tridge and Wrobel [4], and Ramachandran [5]. initial attempts by boundary-element practitioners to effec-
Of the various methods mentioned in literature, the appli- tively deal with the problem domain. (Lafe and Cheng [7])
cation has genera”y progressed in two directions inVOlVing introduced aperturbation technique as a Way Of hand”ng
(i) the domain based methods, i.e., finite difference and fi- nedia heterogeneity. The method however failed to yield ac-
curate result when applied to rapid variations of hydraulic
E-mail address: okuzaks@yahoo.com (O.0. Onyejekwe). conductivity in the problem domain.
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Nomenclature

A constant term in boundary conditions a; time scheme weighting factor

B constant term in boundary conditions A small increment

D dimensionless diffusion coefficient A contact coefficient

gi left-hand side of nonlinear algebraic equation ¢(x,t) dimensionless mass concentration

e iteration parameter ¢%(x,0) initial mass concentration

Jij Jacobian matrix ¥(x,t) spatial derivative of mass concentration

K longest element length 2; linear basis function

L;j equat!on matrix coefficient _ Qubscripts

p equation parameter that defines geometry

q problem constant that defines boundary (k. j,i) rowsand columns of matrix equation
condition Superscripts

Ti;, Sij, Rij, P;jx equation coefficient matrices . .

X space coordinate m,m+1 previous and curren_t tlmg levels

xi x coordinate linked to nodal position (source € ¢ 1 previous and current iterations
point)

Experiences like these place BEM at a disadvantage when On the other hand, the recently formulated DRM-MD
domain integrals are encountered. For example when BEM approach (Popov and Powers [10]) still adopts domain—
is applied to nonlinear, heterogeneous and time dependentiecomposition, but unlike GEM, the domain integrals are
problems involving sources and sinks, lieundary only converted into surface integrals at the contour of each
formulation is invariably lost or seriously compromised. Sub region by the dual reciprocity method (DRM) using
Efforts to restore this have resulted in numerical schemes'adial basis functions. In principle, the DRM-MD method
like the dual reciprocity method (DRM) by Nardini and is essentially similar to GEM except that no cell integration
Brebbia [8], and the particular integrals technique (PIT) by S Performed on each element.

Ahmad and Barnerjee [9]. Apart from an extra numerical  11iS paper utilizes the hybrid boundary integral proce-
rigor involved in converting domain integrals into equivalent 4U"e known as GEM to solve nonlinear equations of complex

boundary integrals, such schemes are still plagued by fully kinetic reaction processes in a slab, cylinder and a sphere as

populated matrices. In addition they have been found to bewe" as a flame propaganon problem, which displays some
: . . o features of combustion. For most parts, the accuracy of the
restricted to problems restricted to weak nonlinearities or

solution is established on the basis of comparison with the
Z?Tllnlﬁdet numbers. (Popov and powers [10], Archer et results of identical problems available in Iitefature.

In the light of all these numerical difficulties severely
restricting the ability of BEM to tackle large scale or real-
istic engineering problems, there now seems to be a con-
sensus of opinion among a good number of BEM enthu-
siasts that the way forward is to incorporate within BEM
formulation, an efficient technique for dealing with domain
integrals. This idea has been approached from two funda-
mentally different points. While a particular approach still
strives to maintain BEMdoundary only character even
when dealing with domain sources the others adopy-a 9p 3%p 3
brid approach which introduces the robustness of other do- 7 =~ P55~ Kip (1a)
main based methods especially finite element technique into oOF 92T
BEMs. The Green element method (GEM), (Taigbenu [12], poC,— = k— + AhoK1p (1b)
Taigbenu [13], Onyejekwe [14], Onyejekwe [15], Onye- ! IX2
jekwe [16]) falls within the second category. GEM over- \here is the material densityX,: are the independent
comes the problems associated with the boundary elemenkpace and time variables,p, k are diffusion coefficient
method by adopting the FEM-type domain mesh and solv- and thermal conductivity, respectivelf,is the temperature,
ing the integral equations of BEM on each element, af- Axg represents the heat of reactiah, is the specific heat
ter continuity conditions are imposed on element inter- at constant pressure ari is the reaction rate constant.
faces. For the sake of brevity, the bar sign will no longer be

2. Model problems
2.1. Coupled nonlinear combustion
The first model presented herein is that of Otey and

Dwyer [17]. It comprises the two coupled diffusion—reaction
equations:
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considered on any of the variables. The above coupled non-9° =0.0, T =T +Cyt (, < i)

linear equations represent a simplified form of the energy 9X C1

equation with a chemical reaction source term in which the T_T (
=14

1
following assumptions have been made namely: > C_> atx =1 ©)

1
whereC1 is a constantC1 = 0.002,0 = 4.0. The exponen-
tial terms in the coupled nonlinear equations indicate a sen-
sitive ignition process. It has been suggested that the time it
takes for the chemical reaction to deviate from the tempera-
ture of the conduction solution serves as the initial time for
The one-dimensional assumption, though a key assumptionStartIng flame p.rc_)pagatmn. predlcUon (Rr?u.zadeh [18])2 The
. : . boundary and initial conditions so specified are designed
does not eliminate the major features of the combustion L i .
N : . to enhance the simplicity of the analysis while at the same
process apart from simplifying the governing equations. . . o
. . . time retain the qualitative features of the model problem.
Before embarking on the mathematical treatment of this . . i !
Here, we consider the conversion so spedids speciess,

model, we shall dwell briefly on some of the key features, . ) :
o . . A = B in a process governed by the one-dimensional cou-
which it represents. The process under consideration results . : . ; : :
. ; . e ! pled nonlinear differential equation. Since the system defies
from interactions of species diffusion, heat conduction and

. . . an analytical method of solution, we choose to employ GEM
chemical reaction. The form of the coordinate shows that we . . . .

T . : . humerical technique to determine the scalar profiles as well
shall limit our attention to a planar geometry. Attention will

be focused on nonlinearities introduced by chemical reac- as other problem parameters of interest.
tions as well as diffusion and conduction of state variables.
The reaction rate constant is an exponential function of tem-
perature describing the Arrhenius type reaction:

(a) constant physical properties;
(b) no convection;

(c) one-dimensional continuum;
(d) no external heat source.

2.2. Transport of a reactant in a reactor

For the second problem, we consider a partial differential
K1 = Koe E/RT (2) equation describing the concentration profile of a reactant

. . ] . along a reactor:
whereRr is the universal gas constant, afids the Arrhenius

activation energy. Making use of the constant physical 3_‘P=ii<Dxp3_¢)+ My (6)
property assumption equation (1a) and (1b) can be non- 9t  x” dx ox 1+ co + By?

dimensionalized using the method adopted by Otey andyherey, is the mass concentration,is the space indepen-
Dwyer [17]. We finally obtain: dent variable, wher@/ is the Thiele modulus; and 8 are
@ 22 L2K; problem constants, and the parameter vajueso0, 1, 2 are

= (3a) used to convert Eq. (6) to that of a slab, cylinder or sphere,
ap 3t X “D respectively. The nonnegative constant D represents the dif-
or 32T L2K; 3b fusion coefficient, and the nonlinear reaction term describes
9t 9x2 + ?’0 (3b) the kinetics of the medium. The initial and boundary condi-

tions can generally be put in the form:
whereL is the length of the problem domain, ah8K1p/ap g ybep

is the Damkohler’s number. We introduce another constant: (x, 0) = (po(x) (7a)
A= KOLZ/a. The ratio of thermal and mass diffusivities 9
a/ap is assumed equal. Egs. (3a) and (3b) can now be rep-@5 -+ Be =V (7b)

resented by:
y where Q, B,V are constants whose values depend on

o 92 iy whether the boundary conditions are Dirichlet, Neumann or

=— — Ape 4a
o —ax2 AP (4a) Cauchy.
aT  9°T
o Ape T 4b
or —ax2 AP (4b)

3. Green element discretization

where A is a dimensionless rate constant, @@ dimen-

sionless activation energy. The initial and boundary condi-  The conversion of the governing partial differential equa-
tions for the solution of Egs. (4a) and (4b) are the same astions (4a), (4b) and (6) to integro-differential forms is
those given by Otey and Dwyer [17]. For a typical tempera- achieved by utilizing theGreen's second identity and an
ture ratl_o_o_f six, oceurring in a hydrocarbon fuel burning in - gyxjliary differential equation dz_(g =8(x —x;) and its so-
air, the initial and final dimensionless mass and temperature|ytion G (x, x;) = 0.5[|x — x;| + x| wherex is an arbitrary

gradients a swell as temperature are specified as: constant, and is represented by the length of the longest
p 9T element in the problem domain. Details of the compu-
— =0.0, — =00 atX=0 tation steps involved in this conversion are clearly ex-

X X
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plained in earlier works (Onyejekwe [13]). Within a typ-
ical linear elementxq x2], the resulting integro-diferntial

The element matrices for a slab are given elsewhere (Onye-
jekwe [14], Onyejekwe [15]), those related to the cylindrical

forms representing slab, cylindrical and spherical geome- coordinates are put in the form:

tries as well as nonlinear coupled equations are given

as:

For a slab:

[—1o(xi, 1) + G*(x2, xD)@(x2, 1) — G*(x1, D (x1, 1)
— G (x2, x)¥ (x2,1) + G (x1, xi) ¥ (x1,1) ]

X2
G| dp _
+/5[E+f(<p)} dvr=0 (82)
X1

where
My

T = T he?
For cylinder:
[—1o(xi, 1) + G*(x2, xD)@(x2, 1) — G*(x1, D (x1, 1)
— G (x2, X)) (x2, 1) + G (x1, xi) ¥ (x1,1) ]

X2
19d¢
+/G<x,xi>[——+f< >———}dx— (8b)
X1
For the nonlinear coupled equations:
[—20(xi, 1) + G* (x2, xi) p(x2, 1) — G*(x1, 1) p(x1, 1)
— G(x2, x))v(x2,1) + G (x1, x;)v(x1, 1) ]

X2
+ / G(x, x,-)[z—f + Apee/T:| dr =0 (8c)

X1
[—AT (xi, 1) + G*(x2, x) T (x2,1) — G*(x1, )T (x1, 1)
— G (x2,%)O (x2,1) + G (x1, ) O (x1,1)]

X2
+/G( ) o7
X, X)) —
Jat

X1

— Ape™?/ T} dr =0 (8d)

Wherek is the contact coefficient,(X, 1) = aa—f(, OX, 1) =

BX’
equatlons are obtained for Egs. (8a), (8b), (8c) and (8d),
respectively:
For a slab:
dy;
Rijpj + Lijyrj + Nij ?"‘f((!’)j (9a)

For a cylinder:
do;
Rijoj + (Lij = S;) W) + Nij <d—t’ + f((p)j) =0  (9b)
For the nonlinear coupled equations:

dp; _
Rijpj + Lijv; + Pijk[d—tj +Ape 9/”} =0 (90)

do:
RijTj+Lij®O; + Pijkl:% - Apeem} =0 (9d)

Q + By = V. The following systems of discrete

X2
Sh =/|:%j|G(x,x,~)dx (10)
X1

wheres2; are element interpolation functions. A generalized
2-level time discretization scheme is employed for the time
derivatives. This results in the following equations:

For a slab:
1 1
oy (DR,'j(p;m+ ) + DL,'j 1//](-mJr ))
+ @ —0a)(DRije"™ + DLijy{™)

1 m m m
+Ni/[ o6 =) + @ (F@)")

ra- az)(f(w)?)} _gi=0 (11a)

For a cylinder:

(le(p(erl) +D( —S’;)l//(mﬂ))

41— az)(DR,]goﬁm) + D(Lij — Sf;)’»”.,('m))
1
eyt

+(1- Olz)(f(q));m))} =g =0 (11b)

For the coupled nonlinear equation:

[az ij+ A”tkj|p(m+l) + Q- ozz)[ u] jmﬂ) PAUtk i
+ (1= a) Ly
— Piji [aZAp](m+l)e—0/Tk
+A—a)ApMe ] =g =0 (11c)
@T(m)

o (m+1)
. ]@] At k

P;ix (m+1)
[azR,,+ A’f }Tk Vbl
+ (1 —ay)[LilO"™
(m+1)
- ijk[“zAp;mH)e*H/ T

(m)
+A—a)ApMe i =g =0 (11d)

where the superscripts andm + 1 denote the previous and
current time levels respectivelys is the time step, and,

is a finite difference weighting factor. For all computations
reported hereing, is assigned a value of 0.67, which in
finite difference appellation is known the Galerkin scheme.
The linearization of the algebraic equation is achieved by
the implementation of the Newton—Raphson’s algorithm.
We adopt the following relationship for an estimate of the
dependent variablg+1.¢),

E(m+1,e+l) — E(m—i—l,e) + Ag(m+1,e+l)

(12a)
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whereAg "+1et+D s the refinement of the initial estimate, [Rij + (% + f((p)'”“’e)Nij}p""H’e“
E J

ande, e + 1 are the previous and current iteration levels. At !
Folowing the Newton—Raphson algorithm, +D(Lij — Sf’.)w’."“’e“
Ly J
1 Le+1
=N;i| —¢; —(1—«
whereg; is a vector of the discrete equations’ left-hand sides Y At(p’ “de

evaluated at the previous iteration level, allfﬁ*l’“) is the mile

Jacobian matrix. —A-a)f(@; " |=0 (13d)
(m+1,e+1)

J,»(;"H’e) [ ﬁl(z(mﬂ,eﬂ) } = —gl-('"H’e) (12c) The Newton—Raphson and the Picard’s schemes are denoted

asmodel-1 andmodel-2, respectively. The finite-difference
Without any loss in generality, the Jacobians for the cylin- solutions of Otey and Dwyer [17] incorporating the Newton—
drical geometry is given by: Raphson linearization are used as our basis for comparison.

9o This is referred to asodel-3.
(m+1,e) 8j ‘

J —
ij - (m+1.e)

A9 lgj=¢;
= & Rij + a.uTyj 2¢§m+1> + O;_Z"tj (12d) 4. Presentationsand discussion of results
We carry out the same procedure for the coupled equation toExample 1. For the validation of the method presented
yield: herein, we compare GEM results with those available in
dgi Pk literature. The first example concerns a flame propagation
= Rij + —1 + PijAe”?/Ti test over a problem domain, whose boundary conditions are
op; |, e T IAy T rapr R y .

TP as specified in Eq. (5). Ignition is initiated by exposing one
0gi o Lis (12€) of the walls to a dimensionless temperature of 0.6. When
dv; L e the wall temperature is so increased, the reactant is heated

! until ignition occurs, thereafter; the flame forms quickly and
98i = Rij + Piji Pl.jkApje*(')/Tk iz begins to propagate with an Arrhenius type reaction across
ITj | =g+t At T} the problem domain until the whole reactant is consumed.
dgi Figs. 1 and 2 show temperature and mass profiles of

azLij (12f) the three models for a relatively low reaction rate—=

o . (m+le) - . . .
vi Vi=v; 2.2 x 10°, a time stepAr = 0.0002 and activation energy

Another linearization technique, the Picard method is 6 = 4. In order to allow for comparison with the work of
linearly convergent and has a simpler formulation than the Otey and Dwyer [17], fifty-one grid points are employed
Newton—Rahpson’s method. For system of equations, GEMfor this simulation, and corresponding points are plotted.
implementation of the Picard’s algorithm yields: A relatively close agreement between the models is observed
with some deviations around the region of steep temperature
gradients. The results were found to improve by placing
more grids in the region of steep scalar gradients.

In order to further explore the physics of the problem, we
decided to plot the mass fraction and temperature profiles
to investigate what happens as time increases from
0.005 tor = 0.015. Figs. 3 and 4 show the results obtained
with model-1. It is clear from this figures that the flame
h§e+1) = [Af.]‘f)]_lsi{hﬁ.e)} (13Db) propagates from left to right as specified by the boundary
conditions. This observation is further confirmed by the
profiles of the scalar gradients for the temperature and shown

(€) (e+1) (e)
zOn ™ =5 (n') (13a)

wheree is the iteration numberzl@ is a pre-multiplying
matrix, and is made up of elements, which depend solely on
the previous iteration of the solution vecidf’ ands; (h(©)

is a known vector. Eq. (13a) can now be put in a more
convenient form for computation:

The Picard scheme is applied to Eqgs. (11a) and (11b) to

obtain: in Fig. 5. It can be seen that the zones of combustion have
3 o miLe\ s | miletl been correctly identified for the time specified.
[RU +(E+f(¢)j )N’ }p/’ Fig. 6 shows the profiles of temperature and mass

fraction as function of space at= 0.005. The relatively
steeper profiles of the field variables are likely to be a
B N{az de"! result of the higher reaction ratet = 1.98 x 10°). When

= Njj

2~ (1—a)—L - R
PR dt compared with Fig. 4 for the same time increment, the mass

A

1,e+1
+ DLy et

N fraction approaches zero much earlier because of a higher
—L—a) f)]" ’e} =0 (13c)  combustion. This is in agreement with physics.
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—— T(model-1)

08 [ - -®--T(model-3) ]
T r +— T(model-2) ]
06 [ : i
02 [ : e P
M ST ST ST BT
0
0 0.2 0.4 0.6 0.8 1
X
Fig. 1. Temperature profiles £ 0.015).
12 T T T T T T T T T T T T T T T T T T T
—&— mass(model-1) ]
- -W- - mass(model-3) ]
- *— mass(model-2) I
g ]
- R O L)
o -
g
TR R RRPRRRRRRHRNN | Mo ]
............................... R
Lol o Lol m .._.-
0 0.2 0.4 0.6 0.8 1

Fig. 2. Mass fraction profiles & 0.015).

Example 2. Our next task involves the determination of the
rate of fuel depletion (Raizadeh 1979) and local Damkdh-
ler's number. A reaction rata = 1.98 x 10° is adopted for
this test, and the boundary conditions remain as specified in
Eq. (5). Fig. 7 shows the local Damké&hler number as a func-
tion of distance at = 0.005. Note that it is zero everywhere
except at the reaction front. Fig. 8 illustrates the fuel deple-
tion as a function of distance at= 0.015. It has a zero value

in the unburnt fuel region, and its value suddenly increases at
the start of combustion until it attains a constant value. These
observations serve to describe the physics of the problem.

Example 3. The ability of GEM to handle complex kinetics

is demonstrated in this example. We investigate a rate
term that represents a substrate inhibition kinetics like
those found in enzyme catalyzed biochemical reaction. The
problem is governed by Eq. (6).

1.4 O L A L A B
i Lo
12 [ o
1
08 Frores ........ —e— mass(GEM) !
§ - -u- - temp(GEM) :
= I I AU ) SRR i
206 : : : 3
o .
= .
0.4 _, ............
02 IS A S pea DN SR
0 P S RS
0 0.2 0.4 0.6 0.8 1
X

14 T T T T T T T T T T

12 e ............. ........ ;- -.-.%-.. - —-I-- - -
—e— mass(GEM) | ...... ]
o
= - -u- - Temp(GEM) ]
= - ; -
o .
\'E
S oga ko S ]
-l | i
06 0.8 1
X
Fig. 4. Temperature and mass fraction profiles: 0.015).
15 -I T T T T T T T T T T T T T T T T T T T T T T T T T l-
i ]
II -
1
10 [ I-', —=&— mass flux (model-1) | 7
S| - -w- - dTrdx(model-1) ]
5 L r ....... e I __
o :
2 ]
é 0 fF <y e
= C i
2 ]
= ]
= ]
T L S
2 i
t -
a0 o
I R ST BRI B P B
15
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Fig. 3. Temperature and mass fraction profiles: 0.005).

Fig. 5. Flux profiles { = 0.015).
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14 [ T 1 T T T T ]
LT R e R

: " : : «
T —e— T(mod-1) A

g L - -®--mass(mod-1) ]

= S SO S L e ]

o 06 [ : : : : : p

o . . . . .

E - -
0.4 [rorr i Lo SRR s
02 __-_-___%____m__?___L”. ;.”..“..%.”..”.“i.“.”.._

R SR 3 L ]

0.2 04 0.6 0.8 1

The rate form is nonlinear and depends on only on
the concentration of the diffusing species. Linearization is
accomplished by applying the Picard scheme (Eq. (13b)).
This problem has been known to exhibit multiple solutions
for certain ranges oM, ¢ and 8. While it is outside of the
scope of this study to carry out a detailed investigation of
the dynamics of chemically reacting systems that exhibit
multiple solutions, however some of the results are worthy
of some comments.

For this example, we consider slab geometry with a
normalized domain of O to 1. The boundary specifications
are a no flux condition at = 0 and a unit concentration
at x = 1. In order to compare GEM results with the
boundary element method (BEM) results of Ramachandran
[5], the following reaction parameters are choskéf= 100,
¢ =110 andg = 1000, D = 1.0. It was found that the
steady state solution was highly dependent on the starting

Fig. 6. Temperature and mass fraction profiles for higher reaction rate CONcentrations (initial conditions). The problem was solved,

(t=0.00

5).

1000

800 [~

damkohler #

200 -

fue
fuel depletion

Table 1
Multiple

Fig. 8. Fuel depletion profile.

solution results

by first of all imposing an initial concentration of unity at
all the nodal points, and again with an initial concentration
of zero. If two solutions are found to be the same, then
only one solution exists, otherwise multiple solutions obtain.
Table 1 shows a relatively close agreement between the
GEM results obtained herein with the BEM results of
Ramachandran [5]. Next, We carried out a sensivity analysis
of the Thiele’s modulus. The problem parametersand

B were kept constant while changing the value of the
Thiele’s modulusM. For each value o, we tested two
different initial conditions(¢(x, 0) =0 and¢(x,0) = 1) or
starting values. Multiple solutions were found to exist in
the following ranges of Thiele’s modulus: 20 < VM <
26.95. Outside of this range, only one solution was found to
exist. This range of Thiels modulus was found to be close
to Ramachandran [5] BEM solution. While it is obvious
that multiplicity behavior is highly or solely dependent
on the variability of certain problem parameters or initial
conditions, an insight into the range of parameters where
such activities are likely to occur could provide a guide to
a reactor engineer as to how particular steady state may be
achieved.

Example4. To further validate GEM algorithm, we consider

a case involving a cylindrical catalyst. The reaction term
depends on both the dependent and space variables. This is
known to arise from a deliberate design or mishap of catalyst
poisoning. The second order reaction is described by:

X

Reference [5]

GEM

Reference [5] GEM

0.0
0.2
0.4
0.6
0.8
1.0
'

4.53e-03
5.02e-02
0.2073
0.4349
0.7035
1000
1.563

448e-03
498e-02
02071
04352
Q7036
100
1558

06702 06681
06843 06841
Q7259 07261
Q7937 08012
08858 08862
100 100
0622 0623




820 0.0. Onyejekwe / International Journal of Thermal Sciences 42 (2003) 813-820

Table 2 References
Results for a catalyst
Node Location Reference [5] GEM [1] G.Ad. La\f/oig, JB H;W(;Od, JC B_eck_, Expelrimentsl a_nd theor_etical
study of nitric oxide formation in internal combustion engines,
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