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Abstract

Certain key characteristics of a general transport process accompanied by a mathematical non-linearity of the governing equa
the chemical reaction term are studied with a hybrid boundary integral technique known as the Green element method (GEM). The
function employed is the singular solution of the one-dimensional Laplace equation, and the non-linearity is resolved by the standard
Raphson and Picard methods. A number of illustrative problems are solved using this algorithm, and in each case, it is simply dem
that GEM is both reliable and adequate for the accurate prediction of field variables.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Mass transport of species accompanied by chemica
action has a ubiquitous presence in several areas of m
cine, engineering and science. For example in combus
and flame propagation, in contamination and remedia
of aqueous environments, arterial blood circulation, des
of heterogeneous reactors, and various enzymatic and
chemical reactions to mention just a few. Fundament
the study of nonlinear reaction kinetics and diffusion pa
the way for a thorough understanding of these phys
processes. Sometimes the time scales of diffusion and
action processes can vary significantly. This introduces s
profiles of dependent variables during solution, as is the
with combustion where mass transport of species is often
companied by a rapid reaction within an active zone. The
velopment of a general mathematical model describing
eral aspects of interaction between chemical, thermal
mass transfer processes is therefore very challenging. S
early attempts to deal with these types of problems ca
found in Lavoie et al. [1], Blumberg [2], Mills et al. [3], Pa
tridge and Wrobel [4], and Ramachandran [5].

Of the various methods mentioned in literature, the ap
cation has generally progressed in two directions involv
(i) the domain based methods, i.e., finite difference and
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nite element techniques, and (ii) the boundary based me
for example, the boundary integral methods. The inte
formulation based on the boundary integral method i
well-established numerical procedure for solving engine
ing problems. An essential feature of the technique is
conversion of the governing partial differential equation i
its integral equivalent by the use the Green’s second ide
equation. The solution of an adjoint differential equation
then used as the weighting function for theweak integral for-
mulation. In most cases, the boundary integral equations
only satisfied at discrete number of points resulting in
symmetric matrices of the systems of linear algebraic eq
tions. In additionboundary only implementation of standar
BEM makes the global matricesfully populated. A concomi-
tant problem therefore is the difficulty encountered in h
dling unsymmetric and fully populated matrices efficien
especially for large-scale problems. A multi-zone appro
has often been adopted as a way of creating an overall sy
of equations that could be better handled numerically (L
et al. [6]). By hindsight, this could be said to be one of
initial attempts by boundary-element practitioners to eff
tively deal with the problem domain. (Lafe and Cheng [
introduced aperturbation technique as a way of handling
media heterogeneity. The method however failed to yield
curate result when applied to rapid variations of hydra
conductivity in the problem domain.
Elsevier SAS. All rights reserved.
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Nomenclature

A constant term in boundary conditions
B constant term in boundary conditions
D dimensionless diffusion coefficient
gi left-hand side of nonlinear algebraic equation
e iteration parameter
Jij Jacobian matrix
κ longest element length
Lij equation matrix coefficient
p equation parameter that defines geometry
q problem constant that defines boundary

condition
Tij , Sij , Rij , Pijk equation coefficient matrices
x space coordinate
xi x coordinate linked to nodal position (source

point)

αz time scheme weighting factor
� small increment
λ contact coefficient
ϕ(x, t) dimensionless mass concentration
ϕ0(x,0) initial mass concentration
ψ(x, t) spatial derivative of mass concentration
Ωj linear basis function

Subscripts

(k, j, i) rows and columns of matrix equation

Superscripts

m,m+ 1 previous and current time levels
e, e+ 1 previous and current iterations
hen
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Experiences like these place BEM at a disadvantage w
domain integrals are encountered. For example when B
is applied to nonlinear, heterogeneous and time depen
problems involving sources and sinks, itsboundary only
formulation is invariably lost or seriously compromise
Efforts to restore this have resulted in numerical sche
like the dual reciprocity method (DRM) by Nardini an
Brebbia [8], and the particular integrals technique (PIT)
Ahmad and Barnerjee [9]. Apart from an extra numeri
rigor involved in converting domain integrals into equivale
boundary integrals, such schemes are still plagued by
populated matrices. In addition they have been found to
restricted to problems restricted to weak nonlinearities
small Peclet numbers. (Popov and powers [10], Archer
al. [11].)

In the light of all these numerical difficulties severe
restricting the ability of BEM to tackle large scale or re
istic engineering problems, there now seems to be a
sensus of opinion among a good number of BEM ent
siasts that the way forward is to incorporate within BE
formulation, an efficient technique for dealing with doma
integrals. This idea has been approached from two fun
mentally different points. While a particular approach s
strives to maintain BEMsboundary only character even
when dealing with domain sources the others adopt ahy-
brid approach which introduces the robustness of other d
main based methods especially finite element technique
BEMs. The Green element method (GEM), (Taigbenu [1
Taigbenu [13], Onyejekwe [14], Onyejekwe [15], Ony
jekwe [16]) falls within the second category. GEM ove
comes the problems associated with the boundary ele
method by adopting the FEM-type domain mesh and s
ing the integral equations of BEM on each element,
ter continuity conditions are imposed on element in
faces.
t

t

On the other hand, the recently formulated DRM-M
approach (Popov and Powers [10]) still adopts domai
decomposition, but unlike GEM, the domain integrals
converted into surface integrals at the contour of e
sub region by the dual reciprocity method (DRM) usi
radial basis functions. In principle, the DRM-MD meth
is essentially similar to GEM except that no cell integrat
is performed on each element.

This paper utilizes the hybrid boundary integral pro
dure known as GEM to solve nonlinear equations of comp
kinetic reaction processes in a slab, cylinder and a sphe
well as a flame propagation problem, which displays so
features of combustion. For most parts, the accuracy o
solution is established on the basis of comparison with
results of identical problems available in literature.

2. Model problems

2.1. Coupled nonlinear combustion

The first model presented herein is that of Otey a
Dwyer [17]. It comprises the two coupled diffusion–react
equations:

∂ρ

∂t
= αD

∂2ρ

∂X2
−K1ρ (1a)

ρ0Cp
∂T

∂t
= k

∂2T

∂X2
+�h0K1ρ (1b)

whereρ is the material density,X, t are the independen
space and time variables,αD, k are diffusion coefficien
and thermal conductivity, respectively,T is the temperature
�h0 represents the heat of reaction,Cp is the specific hea
at constant pressure andK1 is the reaction rate constan
For the sake of brevity, the bar sign will no longer
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considered on any of the variables. The above coupled
linear equations represent a simplified form of the ene
equation with a chemical reaction source term in which
following assumptions have been made namely:

(a) constant physical properties;
(b) no convection;
(c) one-dimensional continuum;
(d) no external heat source.

The one-dimensional assumption, though a key assump
does not eliminate the major features of the combus
process apart from simplifying the governing equations.

Before embarking on the mathematical treatment of
model, we shall dwell briefly on some of the key featur
which it represents. The process under consideration re
from interactions of species diffusion, heat conduction
chemical reaction. The form of the coordinate shows tha
shall limit our attention to a planar geometry. Attention w
be focused on nonlinearities introduced by chemical re
tions as well as diffusion and conduction of state variab
The reaction rate constant is an exponential function of t
perature describing the Arrhenius type reaction:

K1 =K0e−E/RT (2)

whereR is the universal gas constant, andE is the Arrhenius
activation energy. Making use of the constant phys
property assumption equation (1a) and (1b) can be n
dimensionalized using the method adopted by Otey
Dwyer [17]. We finally obtain:

α

αD

∂ρ

∂t
= ∂2ρ

∂X2 − L2K1

αD
ρ (3a)

∂T

∂t
= ∂2T

∂X2 + L2K1

αD
ρ (3b)

whereL is the length of the problem domain, andL2K1ρ/αD
is the Damköhler’s number. We introduce another const
A = K0L

2/α. The ratio of thermal and mass diffusivitie
α/αD is assumed equal. Eqs. (3a) and (3b) can now be
resented by:

∂ρ

∂t
= ∂2ρ

∂X2 −Aρe−θ/T (4a)

∂T

∂t
= ∂2T

∂X2
+Aρe−θ/T (4b)

whereA is a dimensionless rate constant, andθ is dimen-
sionless activation energy. The initial and boundary co
tions for the solution of Eqs. (4a) and (4b) are the sam
those given by Otey and Dwyer [17]. For a typical tempe
ture ratio of six, occurring in a hydrocarbon fuel burning
air, the initial and final dimensionless mass and tempera
gradients a swell as temperature are specified as:

∂ρ = 0.0,
∂T = 0.0 atX = 0
∂X ∂X
∂ρ

∂X
= 0.0, T = Ti +C1t

(
t <

1

C1

)

T = Tf

(
t � 1

C1

)
atX = 1 (5)

whereC1 is a constant.C1 = 0.002,θ = 4.0. The exponen
tial terms in the coupled nonlinear equations indicate a
sitive ignition process. It has been suggested that the tim
takes for the chemical reaction to deviate from the temp
ture of the conduction solution serves as the initial time
starting flame propagation prediction (Raizadeh [18]). T
boundary and initial conditions so specified are desig
to enhance the simplicity of the analysis while at the sa
time retain the qualitative features of the model proble
Here, we consider the conversion so speciesA to speciesB,
A ⇒ B in a process governed by the one-dimensional c
pled nonlinear differential equation. Since the system de
an analytical method of solution, we choose to employ G
numerical technique to determine the scalar profiles as
as other problem parameters of interest.

2.2. Transport of a reactant in a reactor

For the second problem, we consider a partial differen
equation describing the concentration profile of a reac
along a reactor:

∂ϕ

∂t
= 1

xp

∂

∂x

(
Dxp

∂ϕ

∂x

)
+ Mϕ

1+ cϕ + βϕ2 (6)

whereϕ is the mass concentration,x is the space indepen
dent variable, whereM is the Thiele modulus,c andβ are
problem constants, and the parameter valuesp = 0,1,2 are
used to convert Eq. (6) to that of a slab, cylinder or sph
respectively. The nonnegative constant D represents the
fusion coefficient, and the nonlinear reaction term descr
the kinetics of the medium. The initial and boundary con
tions can generally be put in the form:

ϕ(x,0)= ϕ0(x) (7a)

Q
∂ϕ

∂x
+Bϕ = V (7b)

where Q,B,V are constants whose values depend
whether the boundary conditions are Dirichlet, Neuman
Cauchy.

3. Green element discretization

The conversion of the governing partial differential eq
tions (4a), (4b) and (6) to integro-differential forms
achieved by utilizing theGreen’s second identity and an

auxiliary differential equation d2G
dx2 = δ(x − xi) and its so-

lution G(x,xi) = 0.5[|x − xi | + κ] whereκ is an arbitrary
constant, and is represented by the length of the lon
element in the problem domain. Details of the com
tation steps involved in this conversion are clearly
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ical linear element	x1,x2
, the resulting integro-diferntia
forms representing slab, cylindrical and spherical geo
tries as well as nonlinear coupled equations are g
as:

For a slab:[−λϕ(xi, t)+G∗(x2, xi)ϕ(x2, t)−G∗(x1, t)ϕ(x1, t)

−G(x2, xi)ψ(x2, t)+G(x1, xi)ψ(x1, t)
]

+
x2∫

x1

G

D

[
∂ϕ

∂t
+ f (ϕ)

]
dx = 0 (8a)

where

f (ϕ)= Mϕ

1+ cϕ + βϕ2

For cylinder:[−λϕ(xi, t)+G∗(x2, xi)ϕ(x2, t)−G∗(x1, t)ϕ(x1, t)

−G(x2, xi)ψ(x2, t)+G(x1, xi)ψ(x1, t)
]

+
x2∫

x1

G(x,xi)

[
1

D

∂ϕ

∂t
+ f (ϕ)− p

x

∂ϕ

∂x

]
dx = 0 (8b)

For the nonlinear coupled equations:[−λρ(xi, t)+G∗(x2, xi)ρ(x2, t)−G∗(x1, t)ρ(x1, t)

−G(x2, xi)ν(x2, t)+G(x1, xi)ν(x1, t)
]

+
x2∫

x1

G(x,xi)

[
∂ρ

∂t
+Aρe−θ/T

]
dx = 0 (8c)

[−λT (xi, t)+G∗(x2, xi)T (x2, t)−G∗(x1, t)T (x1, t)

−G(x2, xi)Θ(x2, t)+G(x1, xi)Θ(x1, t)
]

+
x2∫

x1

G(x,xi)

[
∂T

∂t
−Aρe−θ/T

]
dx = 0 (8d)

whereλ is the contact coefficient,ν(X, t) = ∂ρ
∂X

, Θ(X, t) =
∂T
∂X

, Q∂ϕ
∂x

+ Bϕ = V . The following systems of discret
equations are obtained for Eqs. (8a), (8b), (8c) and (
respectively:

For a slab:

Rijϕj +Lijψj +Nij

(
dϕj
dt

+ f (ϕ)j

)
(9a)

For a cylinder:

Rijϕj + (
Lij − S

p
ij

)
ψj +Nij

(
dϕj
dt

+ f (ϕ)j

)
= 0 (9b)

For the nonlinear coupled equations:

Rij ρj +Lij νj + Pijk

[
dρj
dt

+Aρe−θ/Tk

]
= 0 (9c)

Rij Tj +LijΘj + Pijk

[
dρj −Aρe−θ/Tk

]
= 0 (9d)
dt
The element matrices for a slab are given elsewhere (O
jekwe [14], Onyejekwe [15]), those related to the cylindri
coordinates are put in the form:

S1
ij =

x2∫
x1

[
Ωj

x

]
G(x,xi)dx (10)

whereΩj are element interpolation functions. A generaliz
2-level time discretization scheme is employed for the t
derivatives. This results in the following equations:

For a slab:

αz
(
DRij ϕ

(m+1)
j +DLijψ

(m+1)
j

)
+ (1− αz)

(
DRij ϕ

(m)
j +DLijψ

(m)
j

)

+Nij

[
1

�t

(
ϕ
(m+1)
j − ϕ

(m)
j

) + (αz)
(
f (ϕ)

(m+1)
j

)

+ (1− αz)
(
f (ϕ)mj

)] ≡ gi = 0 (11a)

For a cylinder:

αz
(
Rijϕ

(m+1)
j +D

(
Lij − S

p
ij

)
ψ
(m+1)
j

)
+ (1− αz)

(
DRij ϕ

(m)
j +D

(
Lij − S

p
ij

)
ψ
(m)
j

)

+Nij

[
1

D�t

(
ϕ
(m+1)
j − ϕ

(m)
j

) + (αz)
(
f (ϕ)

(m+1)
j

)

+ (1− αz)
(
f (ϕ)

(m)
j

)] ≡ gi = 0 (11b)

For the coupled nonlinear equation:[
αzRij + Pijk

�t

]
ρ
(m+1)
j + (1− αz)

[
Lij

]
ν
(m+1)
j − Pijk

�t
ρj

+ (1− αz)[Lij ]ν(m)j

− Pijk
[
αzAρ

(m+1)
j e−θ/Tk

+ (1− αz)Aρ
(m)
j e−θ/Tk

] ≡ gi = 0 (11c)[
αzRij + Pijk

�t

]
T

(m+1)

k + αz[Lij ]Θ(m+1)
j − Pijk

�t
T
(m)
k

+ (1− αz)[Lij ]Θ(m)

− Pijk
[
αzAρ

(m+1)
j e−θ/T

(m+1)
k

+ (1− αz)Aρ
(m)
j e−θ/T

(m)
k

] ≡ gi = 0 (11d)

where the superscriptsm andm+ 1 denote the previous an
current time levels respectively,�t is the time step, andαz
is a finite difference weighting factor. For all computatio
reported herein,αz is assigned a value of 0.67, which
finite difference appellation is known the Galerkin schem
The linearization of the algebraic equation is achieved
the implementation of the Newton–Raphson’s algorith
We adopt the following relationship for an estimate of
dependent variableξ(m+1,e).

ξ(m+1,e+1) = ξ(m+1,e) +�ξ(m+1,e+1) (12a)
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where�ξ(m+1,e+1) is the refinement of the initial estimat
and e, e + 1 are the previous and current iteration leve
Folowing the Newton–Raphson algorithm,

J
(m+1,e)
ij �ξ

(m+1,e+1)
j = −g(e) (12b)

wheregi is a vector of the discrete equations’ left-hand si
evaluated at the previous iteration level, andJ

(m+1,e)
ij is the

Jacobian matrix.

J
(m+1,e)
ij

[
�ϕ(m+1,e+1)

�ψ(m+1,e+1)

]
= −g

(m+1,e)
i (12c)

Without any loss in generality, the Jacobians for the cy
drical geometry is given by:

J
(m+1,e)
ij = ∂gj

∂ϕ

∣∣∣
ϕj=ϕ

(m+1,e)
j

= αzRij + αzµTij2ϕ(m+1)
j + αzNij

D�t
(12d)

We carry out the same procedure for the coupled equatio
yield:

∂gi

∂ρj

∣∣∣∣
ρj=ρ

(m+1,e)
j

= αzRij + Pijk

�t
+ PijkAe−θ/Tk

∂gi

∂νj

∣∣∣∣
νj=ν

(m+1,e))
j

= αzLij (12e)

∂gi

∂Tj

∣∣∣∣
Tk=T

(m+1,e)
k

= αzRij + Pijk

�t
− PijkAρje−θ/Tk

θ

T 2
k

∂gi

∂ψj

∣∣∣∣
ψj=ψ

(m+1,e)
j

= αzLij (12f)

Another linearization technique, the Picard method
linearly convergent and has a simpler formulation than
Newton–Rahpson’s method. For system of equations, G
implementation of the Picard’s algorithm yields:

Z
(e)
ij h

(e+1)
j = si

(
h
(e)
j

)
(13a)

wheree is the iteration number,Z(e)
ij is a pre-multiplying

matrix, and is made up of elements, which depend solel
the previous iteration of the solution vectorh(e) andsi (h(e))
is a known vector. Eq. (13a) can now be put in a m
convenient form for computation:

h
(e+1)
j = [

A
(e)
ij

]−1
Si

{
h
(e)
j

}
(13b)

The Picard scheme is applied to Eqs. (11a) and (11b
obtain:[
Rij +

(
αz

�t
+ f (ϕ)

m+1,e
j

)
Nij

]
ϕ
m+1,e+1
j

+ (DLij )ψ
m+1,e+1
j

=Nij

[
αz

�t
ϕmj − (1− αz)

dϕmj
dt

− (1− αz)f (ϕ)
m+1,e
j

]
= 0 (13c)
[
Rij +

(
αz

�t
+ f (ϕ)

m+1,e
j

)
Nij

]
ϕ
m+1,e+1
j

+D
(
Lij − S

p
ij

)
ψ
m+1,e+1
j

=Nij

[
αz

�t
ϕmj − (1− αz)

dϕmj
dt

− (1− αz)f (ϕ)
m+1,e
j

]
= 0 (13d)

The Newton–Raphson and the Picard’s schemes are de
asmodel-1 andmodel-2, respectively. The finite-differenc
solutions of Otey and Dwyer [17] incorporating the Newto
Raphson linearization are used as our basis for compar
This is referred to asmodel-3.

4. Presentations and discussion of results

Example 1. For the validation of the method present
herein, we compare GEM results with those available
literature. The first example concerns a flame propaga
test over a problem domain, whose boundary conditions
as specified in Eq. (5). Ignition is initiated by exposing o
of the walls to a dimensionless temperature of 0.6. W
the wall temperature is so increased, the reactant is he
until ignition occurs, thereafter; the flame forms quickly a
begins to propagate with an Arrhenius type reaction ac
the problem domain until the whole reactant is consume

Figs. 1 and 2 show temperature and mass profile
the three models for a relatively low reaction rateA =
2.2 × 105, a time step�t = 0.0002 and activation energ
θ = 4. In order to allow for comparison with the work o
Otey and Dwyer [17], fifty-one grid points are employ
for this simulation, and corresponding points are plott
A relatively close agreement between the models is obse
with some deviations around the region of steep tempera
gradients. The results were found to improve by plac
more grids in the region of steep scalar gradients.

In order to further explore the physics of the problem,
decided to plot the mass fraction and temperature pro
to investigate what happens as time increases fromt =
0.005 to t = 0.015. Figs. 3 and 4 show the results obtain
with model-1. It is clear from this figures that the flam
propagates from left to right as specified by the bound
conditions. This observation is further confirmed by
profiles of the scalar gradients for the temperature and sh
in Fig. 5. It can be seen that the zones of combustion h
been correctly identified for the time specified.

Fig. 6 shows the profiles of temperature and m
fraction as function of space att = 0.005. The relatively
steeper profiles of the field variables are likely to be
result of the higher reaction rate(A= 1.98× 106). When
compared with Fig. 4 for the same time increment, the m
fraction approaches zero much earlier because of a hi
combustion. This is in agreement with physics.
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Fig. 1. Temperature profiles (t = 0.015).

Fig. 2. Mass fraction profiles (t = 0.015).

Example 2. Our next task involves the determination of t
rate of fuel depletion (Raizadeh 1979) and local Damk
ler’s number. A reaction rateA = 1.98× 106 is adopted for
this test, and the boundary conditions remain as specifie
Eq. (5). Fig. 7 shows the local Damköhler number as a fu
tion of distance att = 0.005. Note that it is zero everywhe
except at the reaction front. Fig. 8 illustrates the fuel de
tion as a function of distance att = 0.015. It has a zero valu
in the unburnt fuel region, and its value suddenly increase
the start of combustion until it attains a constant value. Th
observations serve to describe the physics of the proble

Example 3. The ability of GEM to handle complex kinetic
is demonstrated in this example. We investigate a
term that represents a substrate inhibition kinetics
those found in enzyme catalyzed biochemical reaction.
problem is governed by Eq. (6).
Fig. 3. Temperature and mass fraction profiles (t = 0.005).

Fig. 4. Temperature and mass fraction profiles (t = 0.015).

Fig. 5. Flux profiles (t = 0.015).
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Fig. 6. Temperature and mass fraction profiles for higher reaction
(t = 0.005).

Fig. 7. Damkohler number profile (t = 0.005).

Fig. 8. Fuel depletion profile.
The rate form is nonlinear and depends on only
the concentration of the diffusing species. Linearization
accomplished by applying the Picard scheme (Eq. (13
This problem has been known to exhibit multiple solutio
for certain ranges ofM,c andβ . While it is outside of the
scope of this study to carry out a detailed investigation
the dynamics of chemically reacting systems that exh
multiple solutions, however some of the results are wo
of some comments.

For this example, we consider slab geometry with
normalized domain of 0 to 1. The boundary specificati
are a no flux condition atx = 0 and a unit concentratio
at x = 1. In order to compare GEM results with th
boundary element method (BEM) results of Ramachand
[5], the following reaction parameters are chosen:M = 100,
c = 110 andβ = 1000, D = 1.0. It was found that the
steady state solution was highly dependent on the sta
concentrations (initial conditions). The problem was solv
by first of all imposing an initial concentration of unity
all the nodal points, and again with an initial concentrat
of zero. If two solutions are found to be the same, th
only one solution exists, otherwise multiple solutions obta
Table 1 shows a relatively close agreement between
GEM results obtained herein with the BEM results
Ramachandran [5]. Next, We carried out a sensivity anal
of the Thiele’s modulus. The problem parametersc and
β were kept constant while changing the value of
Thiele’s modulusM. For each value ofM, we tested two
different initial conditions(φ(x,0)= 0 andφ(x,0)= 1) or
starting values. Multiple solutions were found to exist
the following ranges of Thiele’s modulus: 20.01�

√
M �

26.95. Outside of this range, only one solution was found
exist. This range of Thiels modulus was found to be cl
to Ramachandran [5] BEM solution. While it is obvio
that multiplicity behavior is highly or solely depende
on the variability of certain problem parameters or init
conditions, an insight into the range of parameters wh
such activities are likely to occur could provide a guide
a reactor engineer as to how particular steady state ma
achieved.

Example 4. To further validate GEM algorithm, we consid
a case involving a cylindrical catalyst. The reaction te
depends on both the dependent and space variables. T
known to arise from a deliberate design or mishap of cata
poisoning. The second order reaction is described by:
Table 1
Multiple solution results

X Reference [5] GEM Reference [5] GEM

0.0 4.53e–03 4.48e–03 0.6702 0.6681
0.2 5.02e–02 4.98e–02 0.6843 0.6841
0.4 0.2073 0.2071 0.7259 0.7261
0.6 0.4349 0.4352 0.7937 0.8012
0.8 0.7035 0.7036 0.8858 0.8862
1.0 1.000 1.00 1.00 1.00
Ψ 1.563 1.558 0.622 0.623
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Table 2
Results for a catalyst

Node Location Reference [5] GEM

0.0 0.6093 0.6104
0.4 0.6717 0.6720
0.7 0.8224 0.8227
0.75 0.8568 0.8574
0.85 0.9191 0.9187
1.0 1.0 1.0
Ψ 0.4979 0.4986

f (ϕ, x)=Mϕ2, x � 0.7

f (ϕ, x)=Mϕ2e[−d(x−0.7)], x � 0.7

The exponential term makes the reaction term to de
rapidly for values ofx greater that 0.7. A cylindrica
geometry is considered here, and the following prob
parameters are used in this simulation:M = 4, d = 1.0 ×
106. This example is taken from Ramachandran [5]. T
accuracy of the numerical results was verified by compa
GEM results obtained for 5 and 10 subintervals. Tabl
shows that they are relatively close.

5. Conclusion

We have applied GEM, a hybrid numerical solution te
nique based on BEM–FEM combination, to highly nonlin
diffusion–reaction problems involving different geometri
and to a combustion problem involving interactions betw
thermal and mass transfer processes. The models deve
herein are based on integral replications of the govern
partial differential equations along the lines of the bound
integral theory. By relying on the accuracy of the bound
element formulation, and the domain discretization of
boundary element method, GEM is able to handle nonlin
problems accurately and with minimum efforts. This work
a further attempt to apply boundary integral theory to pr
lems that require domain discretization and complement
tempts such as those of Samec and Skerget [19], Popo
Powers [10].
d

d
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